Optimal Scaling of Companion Pencils for the QZ-Algorithm∗†

نویسندگان

  • D. Lemonnier
  • P. Van Dooren
چکیده

Computing roots of a monic polynomial may be done by computing the eigenvalues of the corresponding companion matrix using for instance the well-known QR-algorithm. We know this algorithm to be backward stable since it computes exact eigenvalues of a slightly modified matrix. But it may yield very poor backward errors in the coefficients of the polynomial. In this paper we investigate what can be done to improve these errors, using a geometric approach. We will see that preconditioning the companion matrix using some carefully chosen similarity may achieve this goal. In particular, we will give a geometric interpretation of what balancing the companion matrix does. We then naturally extend these results for the nonmonic polynomial case where the algorithm we deal with is now the QZ-algorithm acting on companion pencils instead of companion matrices. The article is divided into two parts: in the first one we examine the monic scalar polynomial case and in the second one the general non-monic scalar case. In each part, we begin by explaining the problem in terms of error analysis, and then we look at the problem from a geometric point of view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Conditioning of Linearizations of Matrix Polynomials

The standard way of solving the polynomial eigenvalue problem of degree m in n×n matrices is to “linearize” to a pencil in mn×mn matrices and solve the generalized eigenvalue problem. For a given polynomial, P , infinitely many linearizations exist and they can have widely varying eigenvalue condition numbers. We investigate the conditioning of linearizations from a vector space DL(P ) of penci...

متن کامل

SLICOT Working Note 2013-3 MB04BV A FORTRAN 77 Subroutine to Compute the Eigenvectors Associated to the Purely Imaginary Eigenvalues of Skew-Hamiltonian/Hamiltonian Matrix Pencils

We implement a structure-preserving numerical algorithm for extracting the eigenvectors associated to the purely imaginary eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils. We compare the new algorithm with the QZ algorithm using random examples with di erent di culty. The results show that the new algorithm is signi cantly faster, more robust, and more accurate, especially for hard e...

متن کامل

Solving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial

In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...

متن کامل

Backward Error of Polynomial Eigenproblems Solved by Linearization

The most widely used approach for solving the polynomial eigenvalue problem P (λ)x = (∑m i=0 λ Ai ) x = 0 in n × n matrices Ai is to linearize to produce a larger order pencil L(λ) = λX + Y , whose eigensystem is then found by any method for generalized eigenproblems. For a given polynomial P , infinitely many linearizations L exist and approximate eigenpairs of P computed via linearization can...

متن کامل

Computational Experience with Structure-preserving Hamiltonian Solvers in Complex Spaces

Structure-preserving numerical techniques for computation of eigenvalues and stable deflating subspaces of complex skew-Hamiltonian/Hamiltonian matrix pencils, with applications in control systems analysis and design, are presented. The techniques use specialized algorithms to exploit the structure of such matrix pencils: the skew-Hamiltonian/Hamiltonian Schur form decomposition and the periodi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003